Parvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction.

نویسندگان

  • David W Rodenbaugh
  • Wang Wang
  • Jennifer Davis
  • Terri Edwards
  • James D Potter
  • Joseph M Metzger
چکیده

The cytosolic Ca(2+)/Mg(2+)-binding protein alpha-parvalbumin (alpha-Parv) has been shown to accelerate cardiac relaxation; however, beyond an optimal concentration range, alpha-Parv can also diminish contractility. Mathematical modeling suggests that increasing Parv's Mg(2+) affinity may lower the effective concentration of Parv ([Parv]) to speed relaxation and, thus, limit Parv-mediated depressed contraction. Naturally occurring alpha/beta-Parv isoforms show divergence in amino acid primary structure (57% homology) and cation-binding affinities, with beta-Parv having an estimated 16% greater Mg(2+) affinity and approximately 200% greater Ca(2+) affinity than alpha-Parv. We tested the hypothesis that, at the same or lower estimated [Parv], mechanical relaxation rate would be more significantly accelerated by beta-Parv than by alpha-Parv. Dahl salt-sensitive (DS) rats were used as an experimental model of diastolic dysfunction. Relaxation properties were significantly slowed in adult cardiac myocytes isolated from DS rats compared with controls: time from peak contraction to 50% relaxation was 57 +/- 2 vs. 49 +/- 2 (SE) ms (P < 0.05), validating this model system. DS cardiac myocytes were subsequently transduced with alpha- or beta-Parv adenoviral vectors. Upon Parv gene transfer, beta-Parv caused significantly faster relaxation than alpha-Parv (P < 0.05), even though estimated [beta-Parv] was approximately 10% of [alpha-Parv]. This comparative analysis showing distinct functional outcomes raises the prospect of utilizing naturally occurring Parv variants to address disease-associated slowed cardiac relaxation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of parvalbumin and SERCA2a cardiac myocyte gene transfer in a large animal model of diastolic dysfunction.

Diastolic dysfunction results from impaired ventricular relaxation and is an important component of human heart failure. Genetic modification of intracellular calcium-handling proteins may hold promise to redress diastolic dysfunction; however, it is unclear whether other important aspects of myocyte function would be compromised by this approach. Accordingly, a large animal model of humanlike ...

متن کامل

Gene transfer of parvalbumin improves diastolic dysfunction in senescent myocytes.

BACKGROUND Impaired relaxation is a cardinal feature of senescent myocardial dysfunction. Recently, adenoviral gene transfer of parvalbumin, a small calcium-buffering protein found exclusively in skeletal muscle and neurons, has been shown to improve cardiomyocyte relaxation in disease models of diastolic dysfunction. The goal of this study was to investigate whether parvalbumin gene transfer c...

متن کامل

Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes.

Heart failure frequently involves diastolic dysfunction that is characterized by a prolonged relaxation. This prolonged relaxation is typically the result of a decreased rate of intracellular Ca(2+) sequestration. No effective treatment for this decreased Ca(2+) sequestration rate currently exists. As an approach to possibly correct diastolic dysfunction, we hypothesized that expression of the ...

متن کامل

Genetic manipulation of calcium-handling proteins in cardiac myocytes. II. Mathematical modeling studies.

We developed a mathematical model specific to rat ventricular myocytes that includes electrophysiological representation, ionic homeostasis, force production, and sarcomere movement. We used this model to interpret, analyze, and compare two genetic manipulations that have been shown to increase myocyte relaxation rates, parvalbumin (Parv) de novo expression, and sarco(endo)plasmic reticulum Ca(...

متن کامل

Parvalbumin: Targeting calcium handling in cardiac diastolic dysfunction.

Diastolic heart failure (DHF) is a clinical syndrome characterized by depressed myocardial relaxation performance and poor ventricular refilling. Defective intracellular calcium (Ca(2+)) handling underlies one of the fundamental mechanisms of DHF. Manipulating the content and function of Ca(2+) handling proteins in the heart has been the focus of intense study to develop effective therapies for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 293 3  شماره 

صفحات  -

تاریخ انتشار 2007